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Abstract: Extreme rainfall events cause an increase in the flow into aging sewer networks, which can
lead to Sanitary Sewer Overflows (SSOs). This literature review presents a complete assessment of the
application of Water Sensitive Urban Design (WSUD) approaches as mitigation strategies for reducing
rainfall-induced SSOs. The review highlights the various WSUD techniques identified in past studies
for reducing sewer overflows. In these studies, it was identified that permeable pavements, green
roofs, raingardens/bio-retention cells and rainwater tanks were the most popular WSUD strategies
that have been extensively used in the past for the mitigation of sewer overflows. WSUD or “green”
approaches also have enormous environmental, social and economic benefits when compared to the
conventional “gray” approaches for sewer overflow mitigation. However, there have been limited
studies conducted in the past that highlight and quantify the benefits of WSUD approaches for
sewer overflow mitigation, particularly when such strategies are applied at a large scale (e.g., city
scale). This review has identified the modelling software, SWMM, to be the most widely applied tool
that has been used in the literature for WSUD modelling. It was also identified that with climate
change-induced extreme rainfall events on the increase, WSUD-based “green” strategies alone may
not be enough for the mitigation of sewer overflows. A suitable sewer overflow mitigation strategy
could be green or a hybrid green-gray strategy, which would need to be identified based on a detailed
context specific analysis.

Keywords: sanitary sewer overflows; mitigation strategies; WSUD; LID; SUDS; extreme rainfalls;
climate change; urbanization

1. Introduction

Urban sewerage systems form critical components of any city’s infrastructure. They
are primarily designed to collect and convey stormwater and wastewater. These systems
are becoming increasingly vulnerable to failure, partly due to a lack of consideration of
the consequences of exceeding design specifications. Studies have noted that increased
global warming would trigger severe and frequent high-intensity rainfall events [1–4].
Concurrently, rapid urbanization has also resulted in more impervious areas in cities,
which has led to shorter response times in urban catchment areas. This, in turn, increases
stormwater runoff volumes beyond the capacity of the existing urban drainage systems.
When these systems become less efficient, issues such as urban flooding and sewage
overflow hazards increase, thereby posing a major threat to human life, property and the
urban water environment [1,5–11].

Conventional drainage systems are divided into combined and separate drainage
systems. In a combined drainage system, a single pipe is used to collect and convey both
stormwater runoff and sanitary wastewater. The system is designed in such a way that
wastewater is transported to a sewage treatment plant and the resultant effluent is released
into receiving water bodies [12]. During intense rainfall events, the increased stormwater
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runoff in urban areas increases the inflow into the combined drainage system. When the
inflow volume exceeds the potential capacity of the system or the treatment plant, then
the untreated sewage, along with excess stormwater, is released directly into the suburban
creeks and waterways in order to reduce the pressure on the overall system. This discharge
of diluted sewage is defined as combined sewer overflow (CSO).

In the separate drainage system, separate pipes are used to collect and convey stormwa-
ter runoff and sanitary wastewater. Sanitary sewer pipes are designed to convey only
wastewater, whereas stormwater drainage pipes are designed to convey only stormwater
runoff. In the separate drainage system, intense rainfall increases the inflow, not just into
the stormwater drainage system, but also into the sanitary sewer network. This increased
portion of inflow that occurs in the sewer network during and after a rainfall event is
called Rainfall Derived Infiltration and Inflow (RDII) [13]. Sanitary sewers are designed to
accommodate a certain volume of inflow and infiltration. Past studies have observed that
during intense rainfall events, this designed inflow volume and infiltration is exceeded
and, hence, it leads to sanitary sewer overflows (SSOs) [1,14–18]. The SSOs occur when
the sewage overflows from the manholes to the surface level due to the sewers running
under increased pressure. Manhole surcharge is another situation in which sewage rises in
the manhole shaft but does not overflow, as in the case of SSOs. It is therefore necessary
to have a better understanding of the sources of RDII when planning a sewer system and
proposing mitigation strategies to reduce SSOs. As is indicative of its name, RDII consists
of storm-water entering the sanitary sewer system through the inflow, as well as rainfall
derived infiltration. Inflow is the stormwater entering the sewer pipes through direct
connections through. roof downpipes which are illegally connected to the sanitary sewers,
broken manhole covers and cross-connections between the stormwater and sewer pipes.
On the other hand, infiltration refers to the runoff that is filtered through the soil and then
enters the sewer network through cracked pipe sections, defective joints and damaged
manhole walls. It can also occur due to a rise in the ground water table [13].

CSOs and SSOs are serious threats to public health and possess water quality concerns
because these overflows increase the amount of transported nutrients, micro-organisms,
particulates and metals in the receiving waters [9,19,20]. Thus, they affect the quality
of the receiving waters and carry inherent risks to human health, as well as leading to
environmental pollution. Many studies have been conducted in the past which note
that these sewer overflows are prominent sources of water pollution in receiving water
bodies [21–24]. Hence, the planning and implementation of suitable mitigation strategies is
imperative for reducing the negative impacts of rainfall-induced sewer overflows and for
protecting the health of aquatic ecosystems.

Several conventional approaches exist and are applied for eliminating the potential
effects of sewer overflows. These strategies primarily propound structural actions, such
as maximizing storage capacity, replacing sewer pipes, increasing pump stations and
maximizing treatment facilities [25,26]. These structural strategies are often costly to build,
and their implementation incurs intensive time and labor costs. Moreover, they also fail
to cope with the consequences of the increasing intensities of extreme rainfall events and
urbanization. Therefore, these strategies are becoming less attractive for enhancing the
sustainability of the sewer network, particularly under future uncertainties.

Recent studies have demonstrated that Water Sensitive Urban Design (WSUD) strate-
gies are sustainable, innovative and cost-effective for managing stormwater runoff in urban
areas [27–31]. These strategies are also referred to using different terminologies, such as
low impact development (LID), sustainable urban drainage system (SUDS), best manage-
ment practices (BMPs) and, most recently, green infrastructure (GI) [32]. The purpose
of implementing the WSUD strategies is to restore the city to its natural state, the main
element of which is to restore the natural circulation of runoff. Studies have also exhibited
that WSUD approaches can capture stormwater runoff entering the sewer network during
intense rainfall events [33–39]. The WSUD strategies have benefits other than retarding
stormwater runoff, such as reducing the pollutant load entering receiving waterways,
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replacing potable water with alternate sources for non-consumptive uses, mitigating urban
heat and improving the general urban landscape. These benefits have led to various water
utilities and local councils adopting the use of WSUD strategies as part of both existing and
new developments. In spite of these benefits, limited studies quantifying the benefits of
WSUD approaches exist in the available literature [27,33–35,40–45].

Recent studies have assessed the impacts of WSUD approaches for reducing rainfall-
induced sewer overflow events, volumes and peak overflow rates. Therefore, this review
provides a comprehensive assessment on the WSUD strategies that have been studied in
the past for mitigating rainfall-induced CSOs and SSOs. This review paper is organized
as follows. Section 2 describes in detail on how the database of the reviewed papers
were assembled, including an overview of the research undertaken for the use of WSUD
strategies for sewer overflow mitigation. Section 3 provides a descriptive overview of
the WSUD-based sewer overflow mitigation strategies. A brief description of commonly
applied traditional overflow mitigation strategies is also included in this section. Section 4
focuses on the selection of suitable WSUD modelling tools that are deemed essential for
assessing the technical feasibility of the mitigation approaches. Section 5 provides further
discussion towards developing a suitable sewer overflow mitigation strategy, including
some directions for future research. Finally, the last section provides a summary and the
conclusions drawn from this review.

2. Overview of Reviewed Studies

This study is based on a review of 66 articles that focus on the use of WSUD strategies
for reducing rainfall-induced sewer overflows. The majority of the selected articles have
been published in scientific, peer-reviewed international journals and a few were also from
international conference proceedings, reports from government agencies, book chapters
and dissertations. The review used the Scopus and Google Scholar search engines with a
timeframe ranging between the years 1999 and 2022.

A set of search keywords were chosen, which included a combination of keywords
related to sewer overflows (such as sewer overflow mitigation, CSO control and so on)
and the type of mitigation strategy. The mitigation strategies included “WSUD”, “LID”,
“SUDS”, “BMP” and “GI” (in abbreviated as well as in full form), which were used one
at a time in the search engine. The initial set of articles detected in the search were then
subjected to a manual selection to identify the articles that would be within the scope of
this review.

Table 1 provides a summary of the articles that have been included in this review. The
table includes five different columns, namely: the author’s names and year of publication;
the study location; information about the sewer system; the type of WSUD strategies
implemented; and, finally, the type of applications for which the WSUD strategies were
implemented.

Table 1. A summary of articles reviewed in this study.

S. No. Strategies Used Type of Sewer
System

Country of
Application Application Type Authors, Year

1. Permeable
pavements

Combined Sewer
Sanitary Sewer

United Kingdom,
USA, Canada,

Sweden, Belgium,
Portugal, China,

Switzerland

Reduce CSO and SSO
volumes, events,

stormwater runoff
volume, peak runoff,

CO2 emissions,
nutrients, pollutants.

Cahill, 2012 [36]
Casal-Campos, et al., 2015 [23]

Chen et al., 2019 [29]
De Sousa et al., 2012 [46]

Eulogi et al., 2022 [47]
Foster et al., 2011 [48]

Hansen, 2013 [25]
Hou et al., 2021 [5]

Joshi et al., 2021 [14]
Keeley et al., 2013 [49]

Kloss, 2008 [38]
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Table 1. Cont.

S. No. Strategies Used Type of Sewer
System

Country of
Application Application Type Authors, Year

Kloss and Calarusse 2006 [50]
MMSD, 2011 [51]

Montalto et al., 2007 [52]
Myers et al., 2004 [53]

Patwardhan et al., 2005 [54]
Pickering et al., 2012 [55]

Podolsky, 2008 [56]
Ptomey, 2013 [57]

Quigley and Brown, 2015 [58]
Raucher and Clements, 2010 [59]

Roseboro et al., 2021 [60]
Sample et al., 2014 [61]

Semadeni-Davies et al., 2008 [9]
Smullen et al., 2008 [62]
Spatari et al., 2011 [63]
Stovin et al., 2013 [64]
Struck et al., 2010 [65]

Tackett and Mills, 2010 [66]
Talebi and Pitt, 2018 [31]

Wang et al., 2013 [67]
Wise, 2008 [68]

2. Green roofs Combined Sewer
Sanitary Sewer

USA, Canada,
Denmark, Sweden,
United Kingdom,

Norway, Switzerland,
Germany

Reduce stormwater
runoff volume, peak
runoff, CSO and SSO

volumes, events,
peak overflows,

frequency, pollutants,
direct energy

consumption, urban
heat island effect,

improve air, water
quality and urban

aesthetics.

Banting et al., 2005 [69]
Cahill, 2012 [36]

Chen et al., 2019 [29]
Foster et al., 2011 [48]
Fryd et al., 2012 [70]

Gao and Sage, 2015 [71]
Hansen, 2013 [25]

Hartman, 2008 [72]
Hernes et al., 2020 [28]
Joshi et al., 2021 [14]

Keeley et al., 2013 [49]
Kloss, 2008 [38]

Li, 2008 [73]
Lucas and Sample, 2015 [74]

Montalto et al., 2007 [52]
Patwardhan et al., 2005 [54]

Pennino et al., 2016 [22]
Perez et al., 2010 [37]
Podolsky, 2008 [56]

Quigley and Brown, 2015 [58]
Raucher and Clements, 2010 [59]

Riechel et al., 2020 [21]
Sample et al., 2014 [61]

Semadeni-Davies et al., 2008 [9]
Smullen et al., 2008 [62]
Stovin et al., 2013 [64]

Tackett and Mills, 2010 [66]
Talebi and Pitt, 2018 [31]
Villarreal et al., 2004 [75]

Wang et al., 2013 [67]
Wise et al., 2010 [76]

3. Raingardens Combined Sewer
Sanitary Sewer

USA, Canada, United
Kingdom, Denmark,

Sweden. Norway,
China, Switzerland,

Korea

Reduce stormwater
runoff volume, peak
runoff, CSO and SSO

volumes, events,
peak overflows,

frequency, nutrients,
pollutants, CO2

emissions, improve
water quality.

Abi Aad et al., 2009 [77]
Autixier et al., 2014 [78]

Casal-Campos, et al., 2015 [23]
Cahill, 2012 [36]

Chen et al., 2019 [29]
Colwell and Tackett, 2015 [79]

De Sousa et al., 2012 [46]
Foster et al., 2011 [48]
Fryd et al., 2012 [70]

Hernes et al., 2020 [28]
Hou et al., 2021 [5]
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Table 1. Cont.

S. No. Strategies Used Type of Sewer
System

Country of
Application Application Type Authors, Year

Joshi et al., 2021 [14]
Keeley et al., 2013 [49]

Kim et al., 2022 [1]
Kloss, 2008 [38]

Kloss and Calarusse, 2006 [50]
MMSD, 2011 [51]

Muhandes et al., 2022 [80]
Pennino et al., 2016 [22]

Pickering et al., 2012 [55]
Podolsky, 2008 [56]
Ptomey, 2013 [57]

Semadeni-Davies et al., 2008 [9]
Shamsi, 2012 [35]
Shamsi 2015 [81]

Struck et al., 2010 [65]
Tackett and Mills, 2010 [66]

Talebi and Pitt, 2018 [31]
Wise, 2008 [68]

Wise et al., 2010 [76]

4. Rainwater tanks Combined Sewer
Sanitary Sewer

USA, Thailand,
China, Australia,
Canada, Belgium,

Switzerland, France

Reduce stormwater
runoff volume, peak
runoff, CSO and SSO

volumes, events,
peak flows overflow

hours, demand of
potable water.

Abi Aad et al., 2009 [77]
Boyd, 2011 [12]

Chaosakul et al., 2013 [24]
Chen et al., 2019 [29]

De Sousa et al., 2012 [46]
Foster et al., 2011 [48]

Gao and Sage, 2015 [71]
Ghodsi et al., 2021 [27]

Hou et al., 2021 [5]
Joshi et al., 2021 [14]

Keeley et al., 2013 [49]
Kloss, 2008 [38]

Kloss and Calarusse, 2006 [50]
Liao et al., 2015 [34]

Myers et al., 2004 [53]
Nasrin et al., 2016 [82]

Patwardhan et al., 2005 [54]
Petrucci et al., 2012 [83]

Pitt and Voorhees, 2011 [84]
Podolsky, 2008 [56]
Ptomey, 2013 [57]

Quigley and Brown, 2015 [58]
Struck et al., 2010 [65]

Tackett and Mills, 2010 [66]
Talebi and Pitt, 2018 [31]

Tavakol-Davani et al., 2016 [85]
Vaes and Berlamont, 1999 [86]

Wise, 2008 [68]
Wise et al., 2010 [76]

5. Swales Combined Sewer USA, Denmark,
China

Reduce stormwater
runoff volume, peak
runoff, CSO volumes,

events, nutrient,
pollutants

Foster et al., 2011 [48]
Fryd et al., 2012 [70]

Hansen, 2013 [25]
Hou et al., 2021 [5]

Keeley et al., 2013 [49]
Kloss, 2008 [38]

Kloss and Calarusse, 2006 [50]
Myers et al., 2004 [53]

Pennino et al., 2016 [22]
Ptomey, 2013 [57]

Struck et al., 2010 [65]
Wise, 2008 [68]

Wise et al., 2010 [76]
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Table 1. Cont.

S. No. Strategies Used Type of Sewer
System

Country of
Application Application Type Authors, Year

6. Wetlands Combined Sewer
Sanitary Sewer

USA, United
Kingdom, Germany,

France, Italy

Reduce stormwater
runoff volume, peak
runoff, CSO and SSO

volumes, events,
peak overflows,

nutrients, pollutants,
improve water

quality.

Foster et al., 2011 [48]
Hansen, 2013 [25]
Kloss, 2008 [38]

Kloss and Calarusse, 2006 [50]
Montalto et al., 2007 [52]

Meyer et al., 2013 [87]
Myers et al., 2004 [53]

Ptomey, 2013 [57]
Quaranta et al., 2022 [88]

Quigley and Brown, 2015 [58]
Tao et al., 2014 [89]

Wise et al., 2010 [76]

7. Urban trees Combined Sewer USA, Germany

Reduce stormwater
runoff volume, peak
runoff, CSO volumes,

events, peak
overflows, air

pollutants, urban
heat island effect,

direct energy
consumption.

Foster et al., 2011 [48]
Hansen, 2013 [25]

Keeley et al., 2013 [49]
Pickering et al., 2012 [55]

Raucher and Clements, 2010 [59]
Riechel et al., 2020 [21]
Spatari et al., 2011 [63]

Tackett and Mills, 2010 [66]
Tao et al., 2017 [90]

8. Infiltration
trenches Combined Sewer Denmark, China,

USA

Reduce stormwater
runoff volume, CSO

volumes, peak
overflows, pollutants,

Fryd et al., 2012 [70]
Hou et al., 2021 [5]
Liao et al., 2015 [34]

Lucas and Sample, 2015 [74]
Myers et al., 2004 [53]

Ptomey, 2013 [57]
Sample et al., 2014 [61]

Tao et al., 2017 [90]

9. Detention ponds Combined Sewer USA, Sweden, China

Reduce stormwater
runoff volume, peak
runoff, CSO volumes,

events, peak
overflows, nutrients,

pollutants

Hou et al., 2021 [5]
Pennino et al., 2016 [22]

Ptomey, 2013 [57]
Semadeni-Davies et al., 2008 [9]

Villarreal et al., 2004 [75]

10. Soakaway
retrofits Combined Sewer Denmark, United

Kingdom

Reduce stormwater
runoff volume, CSO

volumes, events.

Fryd et al., 2012 [70]
Roldin et al., 2012 [44]
Stovin et al., 2013 [64]

As mentioned earlier, different types of WSUD strategies have been proposed and
implemented in past studies for sewer overflow mitigation. Figure 1 presents the most
commonly used WSUD strategies and the number of articles corresponding to the stated
approaches. This figure presents the top ten WSUD strategies that were studied in the
reviewed articles. There were a few other strategies that were not commonly used for sewer
overflow mitigation and, hence, are not presented in this figure; for example, stormwater
harvesting and stormwater bump-outs were considered only in one study each, by Riechel
et al., 2020 [21] and Tao et al., 2017 [90], respectively.

From Figure 1 it can be observed that four WSUD strategies are widely applied for
mitigating sewer overflows in the reviewed studies, which are permeable pavements, green
roofs, raingardens/bio-retention cells and rainwater tanks. These four WSUD strategies
were observed to be the most popular, with around 30 studies each (out of the 66 studies
reviewed) having recommended and analyzed these strategies. This is followed by swales
and wetlands being analyzed in 13 and 12 studies, respectively. Urban trees (nine studies),
infiltration trenches (eight studies), detention ponds (five studies) and soakaway retrofits
(three studies) were the remaining WSUD strategies that were analyzed in the reviewed
articles.
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3. Sewer Overflow Mitigation Strategies

This paper reviews the mitigation strategies for reducing SSOs and CSOs and primarily
focuses on WSUD-based strategies for mitigating the adverse impacts of sewer overflows
due to the increase in extreme rainfall events and rapid urbanization. There also exist
several conventional approaches which are commonly applied to eliminate the harmful
impacts of sewer overflows. The following sub-sections briefly describe the commonly
applied conventional sewer overflow mitigation strategies, followed by a discussion on the
various WSUD strategies.

3.1. Conventional Strategies to Mitigate Sewer Overflows

As stated earlier, the majority of the conventional mitigation strategies seek to increase
the storage or conveyance capacity within the sewer system and also include the mainte-
nance and operational actions that are applied for the short-term management of sewer
overflows. These conventional sewer overflow mitigation strategies, also called “gray
infrastructure” approaches, are described in this sub-section.

Sewer rehabilitation is one of the most commonly used techniques to reduce sewer
overflows and spills during heavy rainfall. Some of the sewer facilities were installed many
years in the past and these ageing sewer networks cannot hold the capacity necessitated by
the expansion of cities. The replacement of sewer pipes aims at introducing new volumes
and structural capacities to cope with the increasing intensity of extreme rainfall, combined
with increasing urbanization. Additionally, some old sewer networks have blockages,
cracks and/or joint defects. A past study has noted that excess build up, poor installations
and foreign objects (such as tree roots) in a sewer pipe may reduce its capacity, thereby
necessitating sewer pipe replacement [46].

Maximizing the storage capacity is another traditional method of reducing sewer
overflows [52]. In this method, more storage is built into the sewer system to reduce the
effect of widespread urban flooding and sewage overflow hazards through tanks (such as
end-of-pipe storage chambers), tunnels and basins. The objective and structural component
of a storage facility is to store wastewater directly. The use of storage tanks is effective if
enough space exists and is far from people in urban zones. A storage tunnel is an attractive
option in urban areas as they are able to share the storage capacity between many CSO
outfalls underneath dense urban lands. Storage basins are another storage technology
that can provide attenuation in peak flows, as well as the removal of pathogens, solids,
floatables, etc. Although it could be less costly than storage tanks and tunnels in terms of
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implementation, it might be very challenging to site storage basins in densely urbanized
cities. However, it has previously been noted that the cost of a conventional storage facility
is high and also has adverse aesthetic impacts [91].

Increasing the number of pumping stations is another technique that has traditionally
been applied for a long time. Prior to the occurrence of an overflow, the pumps help to
transfer the overflow to safer areas, thereby mitigating the flood risk. It has been stated
that, due to the high operating pressure of the pumps, a smaller volume channel can be
used to carry a higher capacity in comparison to areas that do not have the pumps [65].
People in low lying areas can install more pumps in the event of intense rainfall to reduce
overflows. Pumping stations can also be increased in the areas where there is a higher risk
of overflow to help in pumping out the excess stormwater.

These aforementioned traditional gray infrastructure strategies lack the sufficient
flexibility to adapt to the negative impacts of urbanization and climate change. Additionally,
these strategies are expensive to build and less effective in terms of cost, site selection,
sustainability and human health benefits [52]. Therefore, the recent years have witnessed a
decline in the use of such gray infrastructure approaches and there has been an increase in
the implementation of sustainable, cost-effective WSUD approaches.

3.2. WSUD Strategies to Mitigate Sewer Overflows

Past studies have extensively researched the different types of sustainable WSUD
strategies for sewer overflow mitigation, which include permeable pavements, green roofs,
raingardens/bio-retention cells, rainwater tanks, swales, wetlands, urban trees, in-filtration
trenches, detention ponds and soakaway retrofits.

These strategies, also called “green infrastructure” approaches, are said to have benefits
from the perspectives of the environment, economy and society when compared to the
conventional “gray infrastructure” approaches [33]. As indicated earlier, they not only
capture the rain and prevent it from flowing into the drainage pipes, thus reducing flood
and sewer overflow risks, but also effectively remove contaminants. The contaminants
that could be removed range between conventional pollutants, such as biochemical oxygen
demand (BOD); total suspended solids (TSS); ammonia; total Kjeldahl nitrogen (TKN);
nitrate; total phosphorus (TP); and pathogens, and high priority pollutants, such as heavy
metals. WSUD strategies are not only cheaper than the gray infrastructure approaches, they
are also multipurpose strategies delivering several secondary benefits that include climate
change adaptation, providing wildlife habitat, making cities more sustainable and being
aesthetically pleasing. This makes the WSUD strategies an attractive option for mitigating
sewer overflows and its harmful impacts [52,88,89].

The WSUD strategies that are commonly used for sewer overflow mitigation (and
were previously presented in Table 1 and Figure 1) are described below:

3.2.1. Permeable Pavements

Permeable pavements are excavated areas where gravel is used to fill the area. A
porous concrete layer or asphalt mix is used for paving the surface. Stormwater runoff
can then pass through the permeable surface, filter through the soil layer and then enter
the gravel storage zone beneath the pavement. Following this, the runoff can enter the
natural soil or to a storm drain through an optional drainage system. It has been shown to
be effective in reducing peak runoff and improving groundwater recharge [54]. It has also
been noted to improve water quality by reducing sediments, nutrients and metals [61].

3.2.2. Green Roofs

These systems are also known as vegetated roof covers. Green roofs have a surface
layer of living plants that grow on the top of a roof, a thin soil layer and a special drainage
mat below the soil layer. It has been stated that green roofs can retain a significant amount
of rainfall and roof runoff, which then filters through the soil layer and drains as excess
percolated water off the roof [72]. They have a multitude of benefits other than retarding
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stormwater runoff and decreasing flows to sewer network during intense rainfall. Some of
the potential benefits which have been observed include reducing direct energy uses and
urban heat island effects via evaporative cooling, removing sound pollution and improving
air quality and biodiversity [76]. They can also provide green spaces in dense urban zones,
thereby improving the community’s aesthetic.

3.2.3. Raingardens/Bio-Retention Cells

Raingardens/bio-retention cells are shallow depression storages which contain veg-
etation layers over an engineered soil mixture. A gravel bed resides beneath the layer of
vegetation, thereby providing the storage, infiltration and evaporation of direct rainfall and
surface runoff [35,92]. These vegetated depressions can provide a wide range of benefits to
private properties and community communal entities. By design, the systems can retain,
filter and treat stormwater runoff in urban areas. It has also been shown to improve water
quality by removing suspended solids, as well as other pollutants, metals and organic
compounds [78].

3.2.4. Rainwater Tanks

Rainwater tanks are amongst the most widely-used WSUD approaches for the non-
potable reuse of water or for outdoor uses [43]. These are popular on-site stormwater
and rainwater collection methods which store water during a storm event. Studies have
exhibited that these storage tanks need to be placed beneath the roof downspouts, which
in turn aids in the capturing of roof runoff water, thereby preventing stormwater inflow
entering the sewer network [12,24,62,77].

3.2.5. Swales

Swales are depressed areas which act as channels for the routing of surface runoff.
Past studies have used grass or vegetation as a cover for the sliding slopes of the depression
areas [92]. Vegetative swales help in reducing the conveyance capacity of stormwater runoff
and provide sufficient time for the stormwater to infiltrate into the natural soil.

3.2.6. Wetlands

Wetlands are the most efficient stormwater treatment areas. They help in the removal
of stormwater pollutants, including dissolved contaminants, heavy metals, colloidal parti-
cles, suspended solids, ammonia and nutrients. Wetlands are primarily shallow, heavily
vegetated artificial ponds consisting of a sedimentation zone. This sedimentation zone is
used to remove coarse sediments, which is followed by a macrophyte zone that contains
plants that remove the fine particulates and absorb soluble pollutants. The final layer con-
sists of a high flow bypass channel that protects the plant zone. In addition to improving
water quality, they have also been proven to reduce the stormwater runoff volume and
peak flows which enter the sewer system during intense rainfall. Studies have noted that
in various urban areas, they have also been used as recreational amenities and wildlife
habitats [52,53,59].

3.2.7. Urban Trees

Trees are an important component of stormwater management in urban areas. They
provide direct ground absorption via trunk flow and rainfall absorption using roots. Addi-
tionally, they decrease the dissolved nitrogen in rainwater and other pollutants in stormwa-
ter runoff. They are also efficient in improving air quality, consequently reducing urban
heat island effects and energy consumption. They are usually noted to be located along-
side urban streets, thus enhancing the landscape and improving the aesthetics of the
community [51,59].
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3.2.8. Infiltration Trenches

Infiltration trenches are narrow ditches that are filled with gravel to the ground level.
They provide storage and capture stormwater runoff from impervious areas. The captured
runoff then infiltrates into the natural soil [92]. They can significantly reduce the runoff
volume that may enter the sewer system. They have been shown to improve the landscape
and its aesthetic by providing green space [61].

3.2.9. Detention Ponds

Detention ponds are used to retain stormwater runoff from impervious areas during
storm events; once the stormwater runoff is retained, they completely release the retained
water through specific outlets within the span of a few hours. A past study stated that
detention ponds can be used to store stormwater runoff temporarily, thereby reducing
the runoff volume and peak flows [22]. They also have varying styles in terms of having
manicured or naturally appearing vegetation.

3.2.10. Soakaway Retrofits

These are circular or square excavations which are then filled with rubble or lined
with brickwork to create a perforated storage structure with a granular backfill or precast
concrete. They act as underground seepage pits for filtering stormwater and are popularly
used on private properties or on the side of streets in densely urban zones. It has been
stated that soakaway retrofits provide stormwater attenuation and help in the recharge of
the groundwater table and stormwater treatment [44,70].

3.3. Performance Evaluation of WSUD Strategies

Based on the reviewed literature, Table 2 presents a list of the selected articles which
highlight the performance of various WSUD strategies. There were 42 studies which
assessed and compared the performance of various WSUD strategies in terms of reduction
in sewer overflow volume and frequency, reduction in peak flow and runoff volume and
also the reduction in various pollutant loads.

Table 2. Summary of articles highlighting the performance of various WSUD strategies.

S. No. WSUD Strategies Used
Overflow
Volume

Reduction

Overflow
Frequency
Reduction

Peak Flow
Reduction

Runoff
Volume

Reduction

Pollutant
Reduction Authors, Year

1. Rainwater tanks,
Raingardens - - - 38% - Abi Aad et al., 2009 [77]

2. Raingardens 31% 15% 26% 19.4% - Autixier et al., 2014 [78]

3. Green Roofs 18.8% - - 65% - Banting et al., 2005 [69]

4. Rainwater tanks - - - 33% - Boyd, 2011 [12]

5. Rainwater tanks,
Bio-retention cells 41% - - - 40% Chaosakul et al., 2013 [24]

6.
Permeable pavements,

Raingardens, Green roofs,
Rain barrels

0.2–23.5% - - - - Chen et al., 2019 [29]

7. Raingardens 6.3% - - - - Colwell and Tackett, 2015 [79]

8. Permeable pavements 11–45% - - - - Eulogi et al., 2022 [47]

9.

Green roofs,
Permeable pavements,

Rainwater tanks,
Raingardens,

Swales,
Urban trees,

Wetlands

22–36% 6–15% 5–36% 50–60% - Foster et al., 2011 [48]
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Table 2. Cont.

S. No. WSUD Strategies Used
Overflow
Volume

Reduction

Overflow
Frequency
Reduction

Peak Flow
Reduction

Runoff
Volume

Reduction

Pollutant
Reduction Authors, Year

10.

Raingardens,
Swales,

Infiltration trenches,
Green roofs,

Soakaway retrofits

20% - - - - Fryd et al., 2012 [70]

11.
Rainwater tanks,

Urban trees,
Green roofs,

6.3% - - - - Gao and Sage, 2015 [71]

12. LID at source 35–49% 22% - - - Gong et al., 2019 [33]

13. Green Roofs 31% 73% - - - Hartman, 2008 [72]

14. Raingardens, Green roofs 100% 50% - - - Hernes et al., 2020 [28]

15.

Permeable pavements,
Raingardens, Rainwater

tanks, Swales, Infiltration
trenches, Detention ponds

47.02% - - - - Hou et al., 2021 [5]

16.
Permeable pavement s,
Raingardens, Rainwater

tanks, Green roofs
50–92.3% - - - - Joshi et al., 2021 [14]

17. Bio-retention cells 70% - - - - Kim et al., 2022 [1]

18.

Green roofs,
Raingardens,

Swales,
Rainwater tanks,

Wetlands,
Permeable pavement

12–38% 14.7% 5–36% 26% - Kloss and Calarusse, 2006 [50]

19.
Rainwater tanks,

Bio-retention cells,
Infiltration trenches

15.5% - 16.2% - - Liao et al., 2015 [34]

20. Green Roofs 18.8% 2.3% - - - Li, 2008 [73]

21.

Bio-retention cells,
Green roofs,

Infiltration trenches,
Permeable pavements

74% - 53% 65.1% - Lucas and Sample, 2015 [74]

22. Constructed wetlands 42% Meyer et al., 2013 [87]

23.
Raingardens,

Rainwater tanks,
Permeable pavements

33% 29% 27% 50% 36% MMSD, 2011 [51]

24.
Green roofs,

Permeable pavements,
Wetlands

- - 40% - - Montalto et al., 2007 [52]

25. Raingardens 20.3% - - - - Muhandes et al., 2022 [80]

26. Rainwater tanks 33% - - - - Nasrin et al., 2016 [82]

27.
Bio-retention cells,

Permeable pavements,
Green roofs

- 46% - 37% - Patwardhan et al., 2005 [54]

28.
Porous pavements,

Bio-retention cells, Urban
trees

90.3% - - - 84.8% Pickering et al., 2012 [55]

29.

Raingardens,
Rainwater tanks,

Permeable pavements,
Green roofs,

Swales,
Infiltration trenches,

Wetlands,
Detention ponds

54% - - 20% - Ptomey, 2013 [57]
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Table 2. Cont.

S. No. WSUD Strategies Used
Overflow
Volume

Reduction

Overflow
Frequency
Reduction

Peak Flow
Reduction

Runoff
Volume

Reduction

Pollutant
Reduction Authors, Year

30. Constructed wetlands 46.3% - - - - Quaranta et al., 2022 [88]

31. Green roofs, tree trenches,
stormwater harvesting 45–58% - 31–48% 28–39% - Riechel et al., 2020 [21]

32. Soakaways Retrofits 55% 48% - - - Roldin et al., 2012 [44]

33. Permeable pavements 2–31% - - - - Roseboro et al., 2021 [60]

34. Raingardens 85% 64% 49% - - Shamsi, 2012 [35]

35. Raingardens 3.5% - - - - Shamsi, 2015 [81]

36. Green Roofs,
Permeable pavements 61% - - 50% - Smullen et al., 2008 [62]

37.
Green roofs,

Soakaways Retrofits,
Permeable pavements

54% 31% - - - Stovin et al., 2013 [64]

38.

Raingardens,
Rainwater tanks,

Permeable pavements,
Green roofs,
Urban trees

83% - - - - Tackett and Mills, 2010 [66]

39.

Green Roofs,
Permeable pavements,

Rainwater tanks
Bio-retention cells

- 50% - 20–80% - Talebi and Pitt, 2018 [31]

40.
Infiltration trenches, tree

trenches, Stormwater
bumpout

95.85% - - - - Tao et al., 2017 [90]

41. Green roofs,
Detention ponds - - - 21% - Villarreal et al., 2004 [75]

42.

Rainwater tanks,
Raingardens,
Green roofs,

Swales,
Wetlands

- - - 50% 58% Wise et al., 2010 [76]

As can be seen in Table 2, the impacts of different WSUD options on sewer overflow
and runoff volume reduction, overflow frequency reduction, peak flow reduction and pollu-
tant reduction vary between studies. This is because the volume of reduction is dependent
on various factors, including the number of WSUD strategy elements implemented, the
layout and sizing of the WSUD elements, the intensity and duration of rainfall events and
so on.

In their study, Tao et al. (2017) [90] implemented three different strategies for both
CSO and flooding control under different circumstances, which included large and small
single events, as well as multiple events, over a one-year period. They concluded that SuDS
were more effective in reducing the peak urban runoff and CSO volume for low intensity
and short duration rainfall events, but not for high-intensity events. For a small event, they
were able to achieve a volume reduction of 95.85%.

Some studies have reported that the combined application of the different WSUD
strategies show a better performance than the application of a single WSUD strategy.
Hernes et al. (2020) [28] found that the combined implementation of green roofs and
raingardens reduced CSO events by 100%. Chen et al. (2019) [29] concluded that the
adoption of WSUD practices on all possible area could potentially achieve the greatest
runoff and pollutant load reductions, but would not be the most cost-effective option.
They also noted that, based on the site characteristics, adding more GI practices would not
necessarily mean that a substantial runoff volume and pollutant load reduction would be
achieved. Pickering et al. (2012) [55] used different strategies to reduce CSOs and found
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that urban tree filters were able to reduce the CSO volumes by 90.3% and the stormwater
treatment, in terms of phosphorus removal, was at 84.8%. Chaosakul et al. (2013) [24] also
recommended multiple WSUD strategies, and their modelling indicated that a combination
of rain barrels and bio-retention cells reduced the CSO volumes by 41% and the CSO
pollutant load by 40%.

Even when a combination of WSUD practices were used, some studies (such as [14,19])
identified that the installed location and distribution of the WSUD strategies can affect the
performance of the combination scheme. Fan et al. (2022) [19] recommended downstream in-
stallation locations for implementing the WSUD strategies. Joshi et al. (2021) [14] implemented
four WSUD strategies to understand their overall effectiveness in reducing the CSO volume
and frequency. They noted that different WSUD strategies, with their different dimensions,
dissimilar working mechanisms and unique deployment requirements, exhibited contrasting
efficiencies in CSO reduction. With a mere 2% spatial coverage of bio-retention cells, the CSO
volume reduction exceeded 71%; when the spatial coverage was increased to 30%, the CSO
volume reduction increased, logarithmically, to 99%. Joshi et al. (2021) [14] also noted that
although green roofs were better able to reduce the CSO volume, rain barrels fared better in
reducing the CSO frequency.

4. Application of WSUD Modelling Tools

Many modelling tools have been developed in recent years for facilitating the man-
agement and modelling of sewer overflows [93–95]. The current review also assessed the
different modelling tools used at present as the selection of an optimum analytical software
is essential for evaluating the performance of the system at hand. An overview of the
modelling tools used to implement WSUD-based strategies for mitigating sewer overflows
is presented in Table 3.

Table 3. Overview of modelling tools used for the mitigation of sewer overflows.

S. No. Modelling Tools WSUD Strategy Authors, Year

1.

Stormwater Management Model
(SWMM);

PCSWMM (advanced modelling
software for SWMM)

Permeable pavements, green
roofs, Raingardens, Rainwater

tanks, Swales, Wetlands, Urban
trees, Infiltration trenches,

Detention ponds, Soakaway
retrofits

Abi Aad et al., 2009 [77]
Autixier et al., 2014 [78]

Cahill, 2012 [36]
Casal-Campos et al., 2015 [23]

Chaosakul et al., 2013 [24]
Colwell and Tackett, 2015 [79]

De Sousa et al., 2012 [46]
Eulogi et al., 2022 [47]
Gong et al., 2019 [33]
Hartman, 2008 [72]
Hou et al., 2021 [5]

Joshi et al., 2021 [14]
Kim et al., 2022 [1]

Liao et al., 2015 [34]
Lucas and Sample, 2015 [74]

MMSD, 2011 [51]
Montalto et al., 2007 [52]

Myers et al., 2004 [53]
Nasrin et al., 2016 [82]

Petrucci et al., 2012 [83]
Pitt and Voorhees, 2011 [84]

Quigley and Brown, 2015 [58]
Roseboro et al., 2021 [60]

Shamsi, 2012 [35]
Shamsi, 2015 [81]

Smullen et al., 2008 [62]
Stovin et al., 2013 [64]
Struck et al., 2010 [65]

Tao et al., 2017 [90]
Tavakol-Davani et al., 2016 [85]

Wang et al., 2013 [67]
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Table 3. Cont.

S. No. Modelling Tools WSUD Strategy Authors, Year

2. Source Loading and Management
Model for Windows (WinSLAMM)

Permeable pavements, Green
roofs, Raingardens, Rainwater

tanks, Swales

Cahill, 2012 [36]
Pitt and Voorhees, 2011 [84]

Struck et al., 2010 [65]

3. MOUSE (Model of Urban Sewers)
Permeable pavements, Green
roofs, Raingardens, Detention

ponds, Soakaway retrofits

Roldin et al., 2012 [44]
Semadeni-Davies et al., 2008 [9]

4. Analytical probabilistic model, SUDS Green roofs Banting et al., 2005 [69]
Li, 2008 [73]

5. CityWatStorm Raingardens Muhandes et al., 2022 [80]

6. InfoWorks Green roofs Hartman, 2008 [72]

7. Hydrus 2D model Wetlands Meyer et al., 2013 [87]

8.
LIFE™ Model (physically-based

hydrologic and water quality
simulation tool)

Bio-retention cells, permeable
pavements, green roofs Patwardhan et al., 2005 [54]

9. Low Impact Development Rapid
Assessment (LIDRA 2.0)

Permeable pavements, Urban
trees Spatari et al., 2011 [63]

10. L-THIA-LID 2.1
Permeable pavements, Green
roofs, Raingardens, Rainwater

tanks
Chen et al., 2019 [29]

11. Mike Urban model Green roofs, Raingardens Hernes et al., 2020 [28]

12. PondPack (Surface Stormwater
Modelling Program) Green roofs, Detention ponds Villarreal et al., 2004 [75]

13.
System for Urban Stormwater

Treatment and Analysis Integration
(SUSTAIN) model

Permeable pavements,
Raingardens MMSD, 2011 [51]

14. SIMBA 6.0 Permeable pavements,
Raingardens Casal-Campos et al., 2015 [23]

15. RAINMAN Green roofs Hartman, 2008 [72]

16. MATLAB and USGS FORTRAN
program LOADEST

Green roofs, Raingardens, Swales,
Detention ponds Pennino et al., 2016 [22]

17. The Reservoir Modelling System Rainwater tanks Vaes and Berlamont, 1999 [86]

18. Microsoft Excel simulation model Rainwater tanks Boyd, 2011 [12]

Among the 66 reviewed studies, 45 of them used numerical modelling to simulate the
behavior and performance of various WSUD strategies. As can be seen in Table 3, different
models have been used to simulate the hydraulic effects of various WSUD strategies,
ranging between state-of-the-art hydrologic-hydraulic simulation models and simple MS
Excel-based models.

It can also be seen from the table that 31 out of the 45 studies that used numerical
modelling have used the Stormwater Management Model (SWMM) as the modelling
software. SWMM, which was developed by the US Environmental Protection Agency
(EPA), is a freely downloadable and widely used platform to simulate rainfall-runoff
processes and the behavior of GI/LID features [92]. It can also be seen in Table 3 that
the reviewed studies used SWMM to model all ten of the WSUD strategies. In a recent
review, Jayasooriya and Ng (2014) [96] reviewed 20 tools for the modeling of stormwater
management and the economics of GI practices and found that SWMM is one of the most
popular runoff modelling tools used by water resource professionals and researchers to
model stormwater quality, quantity and GI performance.

Few studies (for example, [5,74]) have also used PCSWMM, which is the commercial
version of SWMM. PCSWMM uses the SWMM engine and provides a complete GIS-based
interface for enhanced data pre-processing and model parameterization.

A model such as SWMM is configured in a semi-distributed fashion and a typical
model is composed of a limited number of lumped subcatchments. Each subcatchment is
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further divided into pervious and impervious areas to represent different the land cover
and land use types. Using the LID module, SWMM can be used to model numerous
types of LID/WSUD strategies, such as rain barrels, raingardens, green roofs, permeable
pavements, infiltration trenches and vegetative swales. These WSUD strategies need to be
programmed into the SWMM algorithms and can later be accessed easily through simple
dialog boxes [92].

It is also worth mentioning that SMWW is a one-dimensional (1D) dynamic rainfall-
runoff routing model and it works fine for sewer modelling as the drainage networks are
closed pipes or open channels. Under normal circumstances, a 1D is enough to model
the flow in sewer pipes and overflows. However, with extreme storm events occurring
quite frequently, large portions of the urban environment could become flooded. In such
situations, an ID sewer model coupled with a 1D surface network model (1D/1D) or a 1D
sewer model coupled with a two-dimensional (2D) surface flow model (1D/2D) can better
predict the impacts of extreme rainfalls on sewer overflows. The coupling between 1D
and 2D hydraulic models has recently become popular for flood, sewer overflow and dam
break modelling [97–99].

Although the SWMM’s LID module provides substantial flexibility, it also has practical
drawbacks. Platz et al. (2020) [100] undertook a study to quantify how accurately SWMM
simulates the hydrologic activity of various practices in the LID module. They found
limitations, particularly in deep LIDs, such as infiltration trenches, wherein SWMM could
not simulate lateral exfiltration of water out of the storage layers of the LID measure. Other
limitations include the need to configure each GI/LID practice individually and the lack of
a dedicated model output that indicates how much flow is intercepted by the GI/LID.

5. Further Discussion

This section provides further discussion, which could aid in the selection of a suitable
sewer overflow mitigation strategy. Some future directions for further research are also
presented in this section.

5.1. Hybrid Scenario of Green-Gray Strategies

Although the WSUD strategies have been modelled and implemented on a large scale,
some studies note that relying solely on WSUD or green strategies to improve drainage
capacity, and thus reduce sewer overflows, is not sufficient, particularly under intense
rainfall conditions. Therefore, adopting a combination of green and grey approaches is
essential and necessary in most situations [5,33].

Montalto et al. (2007) [52] compared the cost effectiveness of different green strategies
to conventional grey approaches for reducing CSO events in an urban watershed located
in New York City. They found that incorporating WSUD systems into the watershed
was a more cost-effective strategy for reducing CSO than building large-sized CSO tanks.
They suggested that grey strategies such as the construction of tanks should be considered
only after all WSUD options have been exhausted and if additional reductions in CSO are
required.

Some studies have compared the cost-effectiveness of the gray-only and green-gray
combination of sewer overflow control methods and have concluded that the green-gray
combined alternative is more cost-effective than the gray-only option [85]. On the other
hand, Quaranta et al. (2022) [88] undertook a cost-benefit analysis of various sewer overflow
management strategies and concluded that green strategies entail higher multipurpose
benefits, including urban runoff and wastewater reduction, urban heat island mitigation,
carbon removal and biodiversity improvement. Hence, green strategies exhibit a benefit to
the cost ratio, which is generally one order of magnitude higher than the corresponding
grey strategies. Therefore, green strategies can attract investments from various sectors and
could contribute to different policy strategies. Furthermore, citizens are often willing to
pay for the benefits entailed by green solutions.
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5.2. Improving Sewer Overflow Mitigation with RTC Systems

Recent research has demonstrated that real time control (RTC) has potential to bring
further improvements in sewer overflow reduction [47,88]. RTC systems are designed
to achieve the real-time management of existing sewer networks through the continuous
monitoring of process data (e.g., wastewater levels and flow) and the dynamic adjustment
of flow conditions with flow control devices (FCDs) such as pumps, sluice gates, and
moveable weirs.

Eulogi et al. (2022) [47] combined FCDs into a WSUD system by using genetic al-
gorithms to optimally position the RTC actuators. They found that the FCD-WSUD con-
figuration resulted in a reduction in CSO spill volumes ranging between 11% and 45%
when compared to the baseline networks. Similar results were obtained by Quaranta et al.
(2022) [88], wherein RTC was implemented in the existing infrastructure, which could
bring, on average, a reduction in CSO volume of about 20%.

5.3. Lack of Modelling at Larger Scales

Various studies have demonstrated that WSUD strategies could significantly decrease
sewer overflow volumes and pollutant loads [88,90]. However, there are only a few studies
that have evaluated the effects of multiple WSUD practices on sewer overflow and pollutant
load reduction at large spatial scales, for example, at a city scale [80]. This could be due
to the difficulties in implementing sewer overflow mitigation strategies on large spatial
scales because of the influence of complex factors and a lack of basic data. Hence, it is
recommended that research related to strategies for sewer overflow mitigation at large
scales or city-scales is undertaken in a systematic way.

5.4. Developing a Suitable Sewer Overflow Mitigation Strategy

It is observed that recent research has paid more attention to controlling sewer overflows
with WSUD strategies. Despite the advantages of WSUD-based green strategies over gray
strategies, they still face some obstacles. For example, the widespread implementation and
management of WSUD practices may be challenging due to space availability, particularly
in highly urbanized areas. The same can be said about the implementation of gray sewer
overflow mitigation strategies because the construction of such gray facilities also possesses
difficulties in terms of site selections, high costs, limited land availability and so on.

Hence, it can be said that there is no single strategy that can be called a fix-all solution
for the problem of sewer overflow mitigation. It will require the consideration of multiple
strategies (green or a hybrid green-gray strategy) that allow for the possibility of wider
application and, therefore, an increase in the potential impact. The design of an appropriate
sewer overflow management strategy will require the consideration of context-specific
conditions. The successful selection of suitable strategies will typically require multiple
levels and types of analysis (i.e., suitability of the strategies, site availability, cost, perfor-
mance, maintenance, etc.). The application of state-of-the-art modelling software, aided by
optimization tools for optimally locating the selected strategies, as well as for the optimal
placement of the flow control devices for RTC systems, can enhance the performance of the
sewer overflow mitigation strategy.

6. Summary and Conclusions

Short duration intense rainfall events, coupled with rapid pace of urbanization, have
an adverse impact on the performance of the existing sewer networks by causing sewage
overflow hazards. Conventional “gray” overflow mitigation strategies lack the sufficient
flexibility to adapt to adverse events. WSUD “green” strategies, on the other hand, can man-
age stormwater runoff more sustainably and in cost effective ways, which the conventional
strategies are unable to do.

This review highlights the increasing trend of implementing WSUD strategies over
the past couple of decades for mitigating rainfall-induced sewer overflows. Furthermore,
this review also identifies and elaborates upon commonly used WSUD strategies, based
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upon their extensive use in past studies. The identified WSUD strategies are permeable
pavements, green roofs, raingardens/bio-retention cells and rainwater tanks, which have
all been widely applied in the past and have been recommended in most of the reviewed
articles.

WSUD strategies have enormous environmental, social and economic benefits for
minimizing the negative impacts of sewer overflows. The environmental benefits include
reducing the pollutant loads and improving the water quality of the receiving water, pro-
tecting the existing natural and ecological processes and maintaining the natural hydrologic
cycle and aquatic ecosystems. The WSUD strategies also accord social benefits that include
protecting public health, improving the landscape and aesthetics, providing green spaces
and increasing biodiversity, as well as providing economic benefits by being cost-effective
when compared to conventional strategies. Regardless of these benefits, there are only a
handful of studies available in the literature that quantify the benefits of the various WSUD
strategies for sewer overflow mitigation. Hence, this review has highlighted the existing
gap of a lack of studies and systematic methods in the current practices where WSUD
strategies can be implemented for sewer overflow mitigation. A lack of modelling studies at
a large scale (e.g., at the city scale) was also identified and, hence, it was also recommended
to undertake sewer overflow mitigation studies at large scales in a systematic way. This
study also undertook a review of modelling tools, which had identified the SWMM to be
the most widely applied modelling tool that has been recommended in the literature for
hydraulic analysis, as well as for WSUD modelling.

Finally, this review has also concluded that WSUD strategies on their own may not
be enough to mitigate sewer overflows, particularly with the increase in extreme rainfall
events. The selection of suitable mitigation strategies (green or a hybrid green-gray strategy)
will depend on the context-specific conditions and will require detailed analysis in terms of
suitability, site availability, cost and so on. The development of a suitable sewer overflow
mitigation strategy will also need to use the latest software, which can include optimization
tools for optimally locating the selected strategies.
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